Weighted Time Warping for Temporal Segmentation of Multi-parameter Physiological Signals

نویسندگان

  • Gartheeban Ganeshapillai
  • John V. Guttag
چکیده

We present a novel approach to segmenting a quasiperiodic multi-parameter physiological signal in the presence of noise and transient corruption. We use Weighted Time Warping (WTW), to combine the partially correlated signals. We then use the relationship between the channels and the repetitive morphology of the time series to partition it into quasiperiodic units by matching it against a constantly evolving template. The method can accurately segment a multi-parameter signal, even when all the individual channels are so corrupted that they cannot be individually segmented. Experiments carried out on MIMIC, a multi-parameter physiological dataset recorded on ICU patients, demonstrate the effectiveness of the method. Our method performs as well as a widely used QRS detector on clean raw data, and outperforms it on corrupted data. Under additive noise at SNR 0 dB the average errors were 5.81 ms for our method and 303.48 ms for the QRS detector. Under transient corruption they were 2.89 ms and 387.32 ms respectively.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proposed new signal for real-time stress monitoring: Combination of physiological measures

Human stress is a physiological tension that appears when a person responds to mental, emotional, or physical chal-lenges. Detecting human stress and developing methods to manage it, has become an important issue nowadays. Au-tomatic stress detection through physiological signals may be a useful method for solving this problem. In most of the earlier studies, long-term time window was considere...

متن کامل

Dynamic Time Warping for Automated Cell Cycle Labelling

With the widespread use of time-lapse data to understand cellular function, there is a need for tools which facilitate high-throughput analysis of data. We present a system for automated segmentation and cell cycle phase labelling based on aligning temporal signals of simple features directly to a reference signal using Dynamic Time Warping (DTW). This is shown to result in a very accurate temp...

متن کامل

Optimal Current Meter Placement for Accurate Fault Location Purpose using Dynamic Time Warping

This paper presents a fault location technique for transmission lines with minimum current measurement. This algorithm investigates proper current ratios for fault location problem based on thevenin theory in faulty power networks and calculation of short circuit currents in each branch. These current ratios are extracted regarding lowest sensitivity on thevenin impedance variations of the netw...

متن کامل

Real time reconstruction of quasiperiodic multi parameter physiological signals

A modern intensive care unit (ICU) has automated analysis systems that depend on continuous uninterrupted real time monitoring of physiological signals such as electrocardiogram (ECG), arterial blood pressure (ABP), and photo-plethysmogram (PPG). These signals are often corrupted by noise, artifacts, and missing data. We present an automated learning framework for real time reconstruction of co...

متن کامل

A Time-Frequency approach for EEG signal segmentation

The record of human brain neural activities, namely electroencephalogram (EEG), is generally known as a non-stationary and nonlinear signal. In many applications, it is useful to divide the EEGs into segments within which the signals can be considered stationary. Combination of empirical mode decomposition (EMD) and Hilbert transform, called Hilbert-Huang transform (HHT), is a new and powerful ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011